Assessing Classification Model Performance Using the Confusion Matrix

Total Population

ACTUAL CLASS

Actual Positive AP = TP + FN

Actual Negative AN = FP + TN

PREDICTED CLASS ive Predicted Positive PP = TP + FP

True Positive

False Positive
Type I error

FP

Incorrectly reject the null hypothesis H_0

Favor **Precision** when false positives are costly.

Precision

also Positive Predictive Value (PPV)
Proportion of predicted
positives that were right

 $PPV = \frac{TP}{PP}$

PPV = 1 - FDR

 $\uparrow J \qquad FDR = 1 - PPV$

False Discovery Rate

How often model incorrectly discovered alternate hypothesis

 $FDR = \frac{FP}{PP}$

Predicted Negative PN = FN + TN

False Negative
Type II error
FN

True Negative

TN

Negative Predictive Value

Proportion of predicted negatives that were right

 $NPV = \frac{TN}{PN}$

$$NPV = 1 - FOR$$

 $\uparrow \downarrow \qquad FOR = 1 - NPV$

False Omission Rate

How often model incorrectly omitted an alternate hypothesis

 $FOR = \frac{FN}{PN}$

Favor Recall when false negatives are costly.

Recall, Sensitivity

True Positive Rate (TPR)

Coverage of actual positive sample

$$TPR = \frac{TP}{AP}$$

$$TPR = 1 - FNR$$
 $\uparrow \downarrow$ $FNR = 1 - TPR$

Miss Rate

False Negative Rate (FNR)

Type II Error Rate (β)

$$FNR = \frac{FN}{AP}$$

Higher **Specificity** indicates fewer false positives.

Fallout

False Positive Rate (FPR)

Type I Error Rate (α)

$$FPR = \frac{FP}{AN}$$

Incorrectly fail to reject

the null hypothesis H_0

Specificity

True Negative Rate (TNR)

Coverage of actual negative sample

 $TNR = \frac{TN}{AN}$

Accuracy

How much did the model $\ \ AC$ get right overall?

$$ACC = \frac{TP + TN}{N}$$

$$ACC = 1 - ER$$

 $\uparrow\downarrow$

ER = 1 - ACC

Error Rate

How much did the model get wrong overall?

 $ER = \frac{FP + FN}{N}$

Receiver Operating Characteristic (ROC) Curve

Illustrate the tradeoff between model specificity and recall

F₁ Score

Harmonic mean of precision and recall

$$F_1 = 2 \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

F_R Score

A generalization of ${\cal F}_1$ score such that recall is β times more important than precision

$$F_{\beta} = (1 + \beta^2) \frac{\text{Precision} \times \text{Recall}}{\beta^2 \times \text{Precision} + \text{Recall}}$$

smaller $\beta \rightarrow$ emphasize precision, accept more FNs larger $\beta \rightarrow$ emphasize recall, accept more FPs